Recyclability of water-soluble ruthenium‒phosphine complex catalysts in multiphase selective hydrogenation of cinnamaldehyde using toluene and pressurized carbon dioxide

نویسندگان

  • Shin-ichiro Fujita
  • Shuji Akihara
  • Masahiko Arai
چکیده

The recyclability of water-soluble ruthenium – phosphine complex catalysts was investigated in water – toluene and in water – pressurized carbon dioxide systems for selective hydrogenation of trans-cinnamaldehyde (CAL). For the first hydrogenation run, the selectivity for cinnamyl alcohol (COL) is high for both toluene and dense CO2, because of interfacial catalysis in which the reaction mainly occurs at the interface between the aqueous phase and the other toluene or dense CO2 phase. The total CAL conversion and the COL selectivity decrease on the second run, more significantly with dense CO2 than toluene. On the subsequent runs, however, less significant changes were observed. During the first run, the active metal complexes should change to much less active ones such as Ru(H)2Ln(TPPTS)m (L=COL) by accumulation of the main product of COL. This structural change may occur more easily in multiphase hydrogenation with dense CO2 than that with toluene, probably because the solubility in the dense CO2 gas phase is even smaller than that in toluene. For homogeneous reaction of COL in aqueous phase, Ru(H)2Ln(TPPTS)m catalyzes the isomerization to HCAL compared with the hydrogenation to hydrocinnamyl alcohol. With those complexes, however, the selectivity for COL is still comparable to that for HCAL for multiphase hydrogenation reactions because the hydrogenation of an ampholytic substrate of CAL occurs mainly at interface between water and toluene or dense CO2 gas phase. Interactions of CO2 molecules with CAL would also increase the reactivity of carbonyl group of the substrate.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hydrogenation of carbon dioxide to methanol using a homogeneous ruthenium–Triphos catalyst: from mechanistic investigations to multiphase catalysis

The hydrogenation of CO2 to methanol can be achieved using a single molecular organometallic catalyst. Whereas homogeneous catalysts were previously believed to allow the hydrogenation only via formate esters as stable intermediates, the present mechanistic study demonstrates that the multistep transformation can occur directly on the Ru–Triphos (Triphos 1⁄4 1,1,1-tris(diphenylphosphinomethyl) ...

متن کامل

Asymmetric catalytic hydrogenation. Design of new Ru catalysts and chiral ligands: from laboratory to industrial applications.

This Account covers the design of Ru catalysts and ligands. Two classes of chiral phosphine ligands are prepared: the electron-rich trans-2,4-substituted phosphetanes, readily available from optically pure 1,3-diol cyclic sulfates, and atropoisomeric ligands (SYNPHOS, MeO-NAPhePHOS, bearing heterotopic biaryl moieties, and a chiral water-soluble diguanidinium binaphthyl diphosphine, Digm-BINAP)...

متن کامل

Heterogeneous catalysts—discovery and design

Heterogeneous catalysis plays a key role in the manufacture of essential products in key areas of agriculture and pharmaceuticals, but also in the production of polymers and numerous essential materials. Our understanding of heterogeneous catalysts is advancing rapidly, especially by using the latest characterisation methods on these relatively complex effect materials. At the heart of these ca...

متن کامل

Carbon Dioxide Utilization by the Five-Membered Ring Products of Cyclometalation Reactions

In carbon dioxide utilization by cyclometalated five-membered ring products, the following compounds are used in four types of applications: 1. 2-Phenylpyrazole iridium compounds, pincer phosphine iridium compounds and 2-phenylimidazoline iridium compounds are used as catalysts for both formic acid production from CO2 and H2, and hydrogen production from the formic acid. This formic acid can be...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017